[1]陳碧強,張貴鋒,王士元.高體積分數鋁基復合材料Zn基釬料釬焊接頭組織與性能[J].焊管,2019,42(8):19-25.[doi:10.19291/j.cnki.1001-3938.2019.8.004]
 CHEN Biqiang,ZHANG Guifeng,WANG Shiyuan.Microstructure and Property of Aluminium Matrix Composites Joint with High Volume Fraction Using Zn-based Brazing Filler Metal[J].,2019,42(8):19-25.[doi:10.19291/j.cnki.1001-3938.2019.8.004]
點擊復制

高體積分數鋁基復合材料
Zn基釬料釬焊接頭組織與性能
()
分享到:

《焊管》[ISSN:1001-3938/CN:61-1160/TE]

卷:
42
期數:
2019年第8期
頁碼:
19-25
欄目:
試驗與研究
出版日期:
2019-08-28

文章信息/Info

Title:
Microstructure and Property of Aluminium Matrix Composites Joint with
High Volume Fraction Using Zn-based Brazing Filler Metal
文章編號:
10.19291/j.cnki.1001-3938.2019.8.004
作者:
陳碧強張貴鋒王士元
西安交通大學 金屬材料強度國家重點實驗室 焊接研究所,西安 710049
Author(s):
CHEN Biqiang ZHANG Guifeng WANG Shiyuan
Institute of Welding, State Key Laboratory for Mechanical Behavior of Materials, Xi’ an Jiaotong University, Xi’an 710049, China
關鍵詞:
釬焊鋁基復合材料潤濕性剪切強度
Keywords:
brazing aluminium matrix composites wettability shear strength
分類號:
TG407
DOI:
10.19291/j.cnki.1001-3938.2019.8.004
文獻標志碼:
A
摘要:
為了拓展高體積分數(70%)SiC顆粒增強鋁基復合材料在電子封裝領域的應用,從冶金思路出發,通過添加降熔元素Mg和Ga以改善釬縫/母材界面致密潤濕,用3種Zn基中溫軟釬料在相同工藝參數(釬焊溫度480 ℃,壓力0.5 MPa,保溫30 min)下釬焊鋁基復合材料,重點分析了Mg、Ga元素的添加對釬焊接頭組織、力學性能及潤濕性的影響。Zn可深度擴散入基體內,改善基體/釬料(M/M)界面潤濕性。力學性能試驗結果表明:采用Zn-25Al-10Ga-9Mg-1Ti釬料(熔化范圍418~441 ℃)獲得了平均剪切強度為16.6 MPa的釬焊接頭,均高于其他兩種材料;采用優化后的1 MPa壓力時,Zn-25Al-10Ga-9Mg-1Ti釬料接頭剪切強度可達30 MPa。斷裂表面和斷裂路徑分析表明,P/M(顆粒/金屬釬料)界面是薄弱環節,同時釬縫中生成的塊狀Mg2Si相(含少量Al,約6%)也對接頭的力學性能不利。3種含Mg量不同的釬料釬焊結果表明,Zn基釬料中Mg含量對M/M界面影響無顯著差異,但對P/M界面潤濕性與釬縫析出相(Mg2Si)有顯著影響,這為優化Mg含量與釬焊規范(調控基體溶解與消除釬縫脆性)指明了方向。
Abstract:
In order to expand the application of SiC particle-reinforced aluminum matrix composites with the high volume fraction(70%) in the filed of electronic packaging, from the metallurgy aspect, through adding Mg and Ga as the melting point depressant to improve the compactness and wettability of brazing weld/base metal interface, three kinds of Zn-based medium-temperature solder were used to braze aluminum matrix composites under the same technological parameters of brazing temperature 480 ℃, pressure 0.5 MPa and heat preservation 30 min. The influence of Mg and Ga on the joint microstructure, mechanical strength and wettability were investigated. Zn can be deeply diffused into the matrix to improve wettability of the base metal/filler metal(M/M) interface. The results of the mechanical performance test results showed that the brazing joints with an average shear strength of 16.6 MPa were obtained with the Zn-25Al-10Ga-9Mg-1Ti brazing alloy(melting range: 418~441℃), which were higher than the other two materials. The shear strength of Zn-25Al-10Ga-9Mg-1Ti brazing joint can reach 30 MPa with the optimized pressure of 1 MPa. The fracture surface and path analysis showed that the particle/filler metal(P/M) interface was the weak link, and the massive Mg2Si phase, which containing about 6% Al, generated in brazing joint was also unfavorable to the mechanical properties of the joint. The brazing results of the three brazing alloys with different Mg content showed that there was no significant difference in the influence of Mg content in Zn-based brazing alloys on the M/M interface, but it had significant influence on the wettability of P/M interface and the precipitation phase Mg2Si of brazing joints, which showed the direction of optimizing Mg content and brazing specifications(regulating matrix dissolution and eliminating the brittleness of brazing joints).

參考文獻/References:

[1] ROMERO G L, MARTINEZJR J L. Development of metal matrix composite baseplate technology for high current power modules[J]. International Journal of Microcircuits and Electronic Packaging, 1995, 18(3): 251-256.
[2] SADANANDAM J, BHIKSHAMAIAH G, JAIN M K. Effect of different reinforcements on the thermal expansion of 2124 aluminium metal-matrix composites[J]. Journal of Materials Science Letters, 1992, 11(22): 1518-1520.
[3] LEE H S, JEON K Y, KIM H Y, et al. Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications[J]. Journal of Materials Science, 2000, 35(24): 6231-6236.
[4] PREMKUMAR M K, HUNT W H, SAWTELL R R. Aluminum composite materials for multichip modules[J]. Journal of the Minerals, 1992, 44(7): 24-28.
[5] ZWEBEN C. Metal-matrix composites for electronic packaging [J]. Journal of the Minerals, 1992, 44(7): 15-23.
[6] 崔巖. 碳化硅顆粒增強鋁基復合材料的航空航天應用[J]. 材料工程, 2002(6): 3-6.
[7] WU G, ZHANG Q, CHEN G. Properties of high reinforcement-content aluminum matrix composite for electronic packages[J]. Journal of Materials Science: Materials in Electronics, 2003, 14(1): 9-12.
[8] ISEKI T, KALNEDA T, MARUYAMA T. Interfacial reaction between SiC and aluminum during Joining[J]. Jounal of Materials Science, 1984(19): 1692-1698.
[9] KLEHNM R, EAGAR T W. Joining of 6061 Aluminum Matrix-Ceramic Particle Reinforced Composites[J]. WRC Bulletin, 1993(385): 1-28.
[10] 陳華斌, 嚴鏗, 李敬勇, 等. 顆粒增強鋁基復合材料SiCp/6066Al攪拌摩擦焊[J]. 華東船舶工業學院學報(自然科學版), 2004, 18(3): 62-64.
[11] HUSEYIN U. Friction stir welding of SiC particulate reinforced AA2124 aluminum alloy matrix composite[J]. Material and Design, 2007(28): 1440-1446.
[12] ZHANG Guifeng, WEI Zhongxin, CHEN Biqiang, et al. Abnormal transient liquid phase bondability of high-volume fraction sic particle-reinforced A356 composite for Cu interlayer and the interlayer improvement routes[J]. Journal of Materials Engineering and Performance, 2017, 26(12): 5921-5937.
[13] URENA A, GIL L, ESCRICHE E, et al. High temperature soldering of SiC particulate aluminium matrix composites(series 2000) using Zn-Al filler alloys[J]. Science and Technology of Welding and Joining, 2001, 6(1): 1-11.
[14] WANG Peng, LI Qiang, NIU Jitai. Investigation on soldering high volume fraction sic particle reinforced aluminum metal matrix composites[J]. Advanced Materials Research, 2014(853): 90-95.
[15] 張洋, 閆久春, 陳曉光. SiCp/A356 復合材料超聲波輔助釬焊[J]. 焊接學報, 2009, 30(3): 89-92.
[16] ZHANG Guifeng, ZHANG Jianxun, PEI Yi. Joining of Al2O3p/Al composites by transient liquid phase(TLP) bonding and a novel process of active-transient liquid phase(A-TLP) bonding[J]. Materials Science and Engi-neering A, 2008(488): 146-156.
[17] ZHANG Guifeng, CAI Jie, CHEN Biqiang, et al. Availabi-lity of in-situ reinforced active-transient liquid phase bond with good wettability for 70 vol.% SiCp/A356 composite using Al-Mg-Ga-Ti interlayer[J]. Materials and Design, 2016(110): 653-662.

相似文獻/References:

[1]張貴鋒,蘇偉,韋中新,等.攪拌摩擦釬焊制備鋁/鋼防腐雙金屬復合板新技術[J].焊管,2010,33(3):18.[doi:1001-3938(2010)03-0018-07]
 ZHANG Gui-feng,SU Wei,WEI Zhong-xin,et al.Fabrication of Al/steel bimetallic composite plate by a novel process of friction stir brazing (FSB)[J].,2010,33(8):18.[doi:1001-3938(2010)03-0018-07]
[2]劉 陽,張貴鋒,王士元.鈦合金與不銹鋼異種金屬釬焊的研究進展[J].焊管,2019,42(3):1.[doi:10.19291/j.cnki.1001-3938.2019.3.001]
 LIU Yang,ZHANG Guifeng,WANG Shiyuan.Research Progress on Dissimilar Metal Brazing of Titanium Alloy and Stainless Steel[J].,2019,42(8):1.[doi:10.19291/j.cnki.1001-3938.2019.3.001]

備注/Memo

備注/Memo:
收稿日期:2019-01-22
修改稿收稿日期:2019-03-18
基金項目: 國家自然科學基金“可實現釬縫原位強化的高體積分數鋁基復合材料活性液相擴散焊中間層設計及釬縫內原位生成強化相的表征與控制”(項目編號5125390)。
作者簡介:陳碧強(1987—),男,博士研究生,主要從事先進復合材料焊接技術研究。
更新日期/Last Update: 2019-09-29
中国竞彩比分直播网